Project Report On
Algorithm Visualization

“A dissertation submitted in partial fulfilment of the requirements of
Bachelor of Technology Degree in Computer Science and Engineering
of the Maulana Abul Kalam Azad University of Technology for the year
2019-2023”

Submitted by
Samir Chandra Pramanik (26300120051)
Biswajit Das (26300120035)
Suchismita Pal (26300120034)
Souvik Das (26300120046)
Kazi Moksud Hossain (26300119055)

Under the guidance of
Mr. Atanu Kumar Das

Designation
Dept of Computer Science & Engineering

Regent Education and Research Foundation

Regent Education and Research Foundation
(Affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal)

Barrackpore - 700121, Barrackpore, WB

[IN INSTITUTE LETTER HEAD]

Certificate of Approval

This is to certify that this report of B. Tech. Final Year project, entitled
“Algorithm Visualization” is a record of bona-fide work, carried out by Samir
Chandra Pramanik, Biswajit Das, Suchismita Pal, Souvik Das, Kazi Moksud
Hossain under my supervision and guidance.

In my opinion, the report in its present form is in partial fulfilment of all the
requirements, as specified by the Regent Education and Research Foundation
and as per regulations of the Maulana Abul Kalam Azad University of Technology.
In fact, it has attained the standard, necessary for submission. To the best of my
knowledge, the results embodied in this report, are original in nature and worthy of
incorporation in the present version of the report for B. Tech. programme in

Computer Science and Engineering in the year 2019-2023.

Guide / Supervisor

Mr. Atanu Kumar Das

Department of Computer Science and Engineering

Regent Education and Research Foundation

Examiner(s) Head of the Department
Computer Science and Engineering

Regent Education and Research Foundation

ACKNOWLEDGEMENT

We would like to express our profound gratitude to our HOD Mr. Subhankar
Ghosh, of Computer Science & Technology department, for your contributions
to the completion of our project titled Algorithm Visualizer.

We would like to express our special thanks to our mentor Mr. Atanu Kumar
Das, for his time and efforts he provided throughout the year. Your useful
advice and suggestions were really helpful to us during the project’s
completion. In this aspect, we are eternally grateful to you.

Mr./Ms Name

University Roll No and Registration No

Algorithm Visualizer

The goal of the Algorithm Visualizer project is to provide a web application that is
interactive and that enables users to visualise and comprehend a variety of
algorithms that are frequently used in computer science and programming. For users
to investigate the inner workings of algorithms, the project offers a platform that is

visually appealing and user-friendly, which encourages improved understanding and
learning.

im) (3 Document x [Algorithm Visualizer X
C @ 127.00.1:550

ALGORITHM VISUALIZER

Bring algorithms to life through visualization and interactive exploration.

Algorithms to Visualize

Key Features:

1. Algorithm Selection: The application allows users to choose from a wide
range of algorithms, including sorting, searching, graph traversal, and
more.

2. Interactive Visualization: The algorithms are visualized using animated
graphics and step-by-step demonstrations, enabling users to observe
the algorithm's execution in real-time.

3. Customization Options: Users can modify input parameters such as array
size, data distribution, and initial configurations to observe how the
algorithms behave under different scenarios.

4. User-Friendly Interface: The web application boasts a clean and intuitive

user interface, ensuring ease of navigation and interaction.

The Algorithm Visualizer project seeks to provide students, educators, and
hobbyists with an invaluable learning resource for algorithms and their applications.
The project encourages algorithmic comprehension and expertise by offering a fun
and interactive platform, which supports the growth of effective problem-solving

abilities in the field of computer science.

Here is the project link: Algorithm Visualizer (psamir275.github.io)

https://psamir275.github.io/

CONTENTS

CHAPTER 1 INTRODUCTION

e Objective2

e Scope of the System3

e Feasibility Study
o Technical Feasibility
o Operational Feasibility

o Economic Feasibility

CHAPTER 2 SOFTWARE REQUIREMENT SPECIFICATION (SRS)
CHAPTER 3 SOFTWARE DEVELOPMENT PROCESS MODEL ADOPTED
CHAPTER 4 OVERVIEW

e System Overview
o Limitation of Existing System

e Proposed System
o Objectives of the proposed system
o Users of the Proposed system

O

CHAPTER § ASSUMPTION AND DEPENDENCIES

CHAPTER 6 TECHNOLOGIES

e Tools used in Development
e Development Environment
o Software Interface

e Hardware Used

CHAPTER 7 DESIGN

e Class Diagram
e Data Flow Diagram

e Entity Relationship Diagram

CHAPTER 8 DATA DICTIONARY

CHAPTER 9 TESTING

e Unit Testing
e Integrity Testing

CHAPTER 10 SNAPSHOTS

CHAPTER 12 CONCLUSION and FUTURE SCOPE

CHAPTER 11 REFERENCES

INTRODUCTION

When we talk about complex subject topics like Algorithms, it becomes
extremely necessary for students to have a strong grip over the topic as it
would form the foundation of their computational thinking and
programming skills. We had observed that through conventional methods of
teaching it becomes a little difficult for students to understand the concept
and for teachers to explain their thoughts. Motivated by the age-old saying, “a
picture speaks more than thousand words”, many researchers and educators
assume that students would learn an algorithm faster and more
thoroughly using algorithm visualization techniques1. So, we developed a
method of learning through visualization and hand-on experience over
different searching and sorting algorithms which is bound to help the students

and teachers.

Definition of Algorithm?

A set of detailed instructions or a step-by-step process for finishing a task or
addressing a problem is known as an algorithm. A computer programme follows a
clear, unambiguous set of instructions to carry out a particular task or computation.
An algorithm's objective is to carry out a task or solve a problem in an effective,
accurate, and efficient manner. In many disciplines, such as computer science,
mathematics, engineering, and the natural sciences, algorithms are used to carry
out operations including data analysis, sorting, searching, optimisation, and
decision-making. They are essential to how computers work and how software

programmes are created.

Types of algorithms

There are many types of algorithms, some of which are:

1. Sorting algorithms: These algorithms are used to sort a list of elements into a

specific order, such as alphabetical or numerical order.

2. Searching algorithms: These algorithms are used to search for a specific item or
value within a data set, such as finding a word in a document or a number in an

array.

3. Graph algorithms: These algorithms are used to model relationships between
data points, such as determining the shortest path between two points or finding

the minimum spanning tree of a graph.

4. Computational algorithms: These algorithms are used to perform complex
mathematical calculations, such as solving equations or simulating physical

systems.

5. Divide and conquer algorithms: These algorithms break a problem into smaller
sub-problems, solve each sub-problem independently, and then combine the results

to solve the original problem.

6. Greedy algorithms: These algorithms make locally optimal choices at each step

in the hope of finding a global optimum solution.

7. Dynamic programming algorithms: These algorithms solve problems by breaking
them down into smaller sub-problems, solving each sub-problem only once, and

then storing the results to avoid redundant computations.

8. Randomized algorithms: These algorithms use a random element in the algorithm

to achieve a specific outcome, such as generating random numbers or sorting data.

Visualization

To facilitate comprehension, analysis, and communication, data or information is
represented graphically or visually through visualisation. Complex data sets can be
made more understandable, wuseful, and accessible by using visualisation

techniques.

There are many ways to visualise data, including charts, graphs, diagrams, maps,
and infographics. It entails choosing data and presenting it in a way that draws
attention to patterns, trends, connections, and anomalies. It is frequently simpler
to spot patterns and trends, comprehend correlations between variables, and

explain difficult information to others by visualising data.

Algorithm Visualisation

The use of visual representations to explain how algorithms behave and operate is
known as algorithm visualisation. It entails producing animations, interactive

simulations, or other visualisations that show how algorithms function piecemeal.

Making it simpler for people to learn about algorithms and comprehend the
principles behind them is the aim of algorithm visualisation. Users can better
understand how the algorithm operates and why certain results are produced by
using visual aids that allow them to see how data is handled and processed at each

level of the process.

Algorithms visualizer

Users can interactively visualise the behaviour and execution of algorithms using
the software tool known as an algorithm visualizer. It is a kind of algorithm
visualisation that offers a simple user interface for discovering and comprehending

algorithms.

Users can often go through the execution of an algorithm using algorithm visualizers,
visualising each step as it happens and viewing how data is processed and handled
at each stage. Other interactive capabilities offered by certain algorithm visualizers
include the ability to alter input parameters, modify the algorithm's settings, and

observe how these modifications impact the algorithm's behaviour.

Objective:

Algorithm visualization's goal is to graphically depict an algorithm's behaviour and
inner workings in order to aid consumers in understanding it. Various visual
representations, including graphs, charts, animations, and interactive simulations,

can be used to accomplish this.

There are several situations in which algorithm visualisation is beneficial. It can
make complex algorithms easier for students and other learners to understand in a
fun and straightforward way. By giving a clearer picture of how algorithms function
and where possible problems can occur, it can also aid academics and developers
in their efforts to debug and optimise algorithms. Algorithm visualisation is a useful

tool for anyone who wants to better understand algorithms and the uses for them.

Scope of the System

The purpose of an algorithm visualisation system is typically to create an
interactive and visual depiction of an algorithm's execution. The system should
be able to display the algorithm's stages as it processes data and allow users to
interact with and edit the data as well as the algorithm itself.

The system should also be able to display the algorithm's runtime complexity,
allowing users to see how the algorithm's performance varies as the input data
size grows. This can assist users in understanding the algorithm's scalability
and making educated decisions about when to utilise it in practise.
Furthermore, the system should be user-friendly and accessible, with intuitive

visualisations and clear descriptions of the processes.

Feasibility Study

Technical Feasibility

Algorithm visualisation is the act of using graphical or visual representations to
better understand the stages involved in addressing a certain problem using an
algorithm. The feasibility of constructing an algorithm visualisation is determined
by a number of criteria, including the complexity of the algorithm, the availability
of appropriate visualisation tools, and the skill of the person doing the

visualisation.

In general, most algorithms can be visualised theoretically, but the amount of
difficulty varies. Simple algorithms, such as sorting algorithms like bubble sort,
selection sort, and insertion sort, can be easily visualised using simple diagrams
or animations. More complex algorithms, such as machine learning algorithms
like neural networks, may necessitate more advanced visualisation tools and

methodologies.

Operational Feasibility

The extent to which an algorithm visualisation tool can be effectively
incorporated into an organization's or system's existing operational processes
is referred to as operational feasibility. In the context of algorithm
visualisation, operational feasibility would entail determining whether the tool
can be seamlessly integrated into the existing software development process

and whether it is compatible with the existing tools and technology.

User acceptability is a crucial part of operational feasibility. The tool should
be user-friendly and simple to use, allowing developers to quickly learn how
to use it and integrate it into their workflow. The visualisation tool should also
be versatile and flexible, allowing developers to use it in the way that best

suits them.

Economic Feasibility

The use of visual representations to help users understand algorithms and
their behaviours is referred to as algorithm visualisation (AV). Any software
development effort, including algorithm visualisation, must consider economic

feasibility. Here are some things to think about:

Development costs vary based on the complexity of the algorithms being
visualised, the level of interaction required, and the programming language
and tools employed. To assess if the instrument is economically feasible, the

development expenses should be compared against the prospective benefits.

Adoption: The success of an antivirus tool is ultimately determined by whether
or not people adopt and continue to use it. As a result, it is critical to examine

the user experience, convenience of use, and whether the tool is suitable.

SOFTWARE REQUIREMENT SPECIFICATION (SRS)

Algorithm visualization is a wuseful tool for teaching computer science
concepts and improving algorithm design. This document outlines the software

requirements for a system that visualizes algorithms.

Purpose: The purpose of this software is to provide a visual representation of

algorithms to aid in teaching and understanding computer science concepts.

Scope: The software will provide visualization for a variety of algorithms and
allow users to step through each step of the algorithm, observe the state of
the data structures, and trace the flow of control. The software will support a

variety of programming languages, including C++, Java, and Python.

Functional Requirements:

3.1. User Interface The software will have a graphical user interface that
displays the algorithm visualization and controls for stepping through the

algorithm. The user interface will be intuitive and easy to use.

3.2. Algorithm Visualization The software will provide visualizations for a
variety of algorithms, including sorting algorithms, search algorithms, and
graph algorithms. The visualization will display the state of the data

structures and the flow of control as the algorithm executes.

3.3. Language Support The software will support a variety of programming
languages, including C++, Java, and Python. The user will be able to select

the language for the algorithm to be visualized in.

3.4. Code Import The software will allow users to import code from a file or
copy and paste code into the software. The software will automatically

generate a visualization for the algorithm based on the imported code.

3.5. Code Editing The software will allow users to edit the code of the
algorithm within the software. The software will update the visualization in

real-time as the user edits the code.

3.6. Step Control The software will allow users to step through each step of
the algorithm, observing the state of the data structures and the flow of

control.

3.7. Data Structure Inspection The software will allow users to inspect the
state of the data structures at any point in the algorithm execution. The user

will be able to view the contents of variables and data structures.

Non-functional Requirements:

4.1. Performance The software will be designed for efficient performance,

with minimal lag or delay in visualization updates.

4.2. Reliability The software will be reliable and error-free, with robust error

handling and recovery mechanisms in place.

4.3. Compatibility The software will be compatible with a variety of operating

systems, including Windows, macOS, and Linux.

4.4. Usability The software will be easy to use, with an intuitive user interface

and clear documentation for users.

Constraints: The software will require modern web browsers with support for
WebGL and JavaScript. The software will not support languages other than
C++, Java, and Python.

Future Enhancements: Future enhancements to the software may include
additional language support, improved performance, and additional

visualization types.

Conclusion: This document has outlined the requirements for a software system that
provides algorithm visualization for a variety of programming languages. The
software will provide an intuitive user interface and support for inspecting data
structures and stepping through the algorithm. The software will be reliable and

efficient, with compatibility for multiple operating systems.

SOFTWARE DEVELOPMENT PROCESS MODEL ADOPTED

There are several software development process models that can be adopted
for Algorithm Visualization. One popular model is the Agile methodology,
which emphasizes continuous delivery and customer collaboration throughout

the development process.

In the Agile methodology, development is broken down into small, iterative
cycles called sprints. Each sprint typically lasts between 1-4 weeks and
involves a set of tasks or user stories that the development team works on.
At the end of each sprint, the team delivers a working increment of the

software.

Another software development process model that can be adopted for
Algorithm Visualization is the Waterfall model. In this model, development
progresses in a linear fashion through a set of well-defined stages, starting
with requirements gathering and ending with deployment. Each stage must be
completed before moving on to the next, with little room for iteration or change

once a stage is complete.

There are also hybrid models that combine aspects of Agile and Waterfall
methodologies, such as the Spiral model. This model involves a series of
iterative cycles, with each cycle involving a set of planning, risk analysis, and

prototyping stages.

Ultimately, the software development process model adopted for Algorithm
Visualization will depend on the specific needs of the project and the
preferences of the development team. It's important to choose a model that
supports collaboration, communication, and flexibility in order to ensure the

success of the project.

OVERVIEW

e System Overview

In algorithm visualization, a system overview provides a high-level view of the
different components and processes involved in the algorithm. The system
overview typically includes a graphical representation of the algorithm and its

key components, such as data structures, functions, and control flow.

The purpose of the system overview is to help users understand how the
algorithm works at a high level, without getting bogged down in the details of
individual steps. By providing a clear picture of the overall structure of the
algorithm, the system overview can help users identify patterns and
relationships that might not be immediately apparent from a step-by-step

description.

To create a system overview in algorithm visualization, you might use a range
of graphical tools, such as flowcharts, diagrams, or interactive visualizations.
The system overview should provide a clear and intuitive representation of
the algorithm, highlighting the key steps and decision points in the process.
You might also include annotations or notes to provide additional context or

explanation for each component or process.

Overall, a well-designed system overview can be an invaluable tool for
understanding complex algorithms and can help users quickly identify areas

where improvements or optimizations might be possible.

o Limitation of Existing System

Algorithm visualization is a powerful tool for teaching and understanding
computer algorithms. However, existing systems for algorithm visualization

have several limitations:

Limited Interactivity: Most existing systems provide only limited interactivity,
such as step-by-step execution or the ability to pause and resume execution.
This can make it difficult for learners to explore alternative paths through the

algorithm.

Limited Scope: Many algorithm visualization systems only visualize a single
algorithm or a small set of algorithms. This can make it difficult for learners

to compare and contrast different algorithms.

Limited Customization: Existing systems often do not allow users to customize
the visualization to their needs or preferences. This can make it difficult for

learners to adapt the visualization to their learning style.

Limited Scalability: Some existing systems can only visualize small instances
of algorithms. This can make it difficult for learners to understand the

algorithm's behaviour on larger input sizes.

Limited Accessibility: Many algorithm visualization systems are not accessible

to learners with disabilities, such as visual or hearing impairments.

Limited Coverage: Many existing systems focus on classic algorithms,

neglecting important modern algorithms and data structures.

Overall, while algorithm visualization is a powerful tool for learning and
understanding algorithms, existing systems have several limitations that can

make it challenging for learners to fully benefit from this technology.

Proposed System

o Objectives of the proposed system
Depending on the particular goals and requirements of the system,
the objectives of a proposed system for algorithm visualisation
may change. However, the following are some general goals that

an algorithm visualisation system might pursue:

Enhancing Understanding: The main goal of an algorithm
visualisation system is to make complex algorithms and data
structures easier for users to understand. An algorithm's behaviour
can be learned and understood more easily and interactively

through visualisation, which can aid in users' memory retention.

Enhancing Learning: Students, researchers, and developers can
all benefit from a visualisation system's improved accessibility and
interactivity of algorithms and data structures. The system's ability
to provide immediate feedback on an implementation's correctness

makes it possible to
o Users of the Proposed system

Algorithm visualization systems are software tools that help users
to visualize how algorithms work. Users of these systems can be
anyone interested in learning about algorithms, from students
studying computer science to experienced programmers looking to
better understand complex algorithms. Here are some of the

potential users of a proposed system for algorithm visualization:

Students: Students who are learning about algorithms in computer
science courses can benefit greatly from algorithm visualization
tools. These tools help students to better understand how
algorithms work by providing a visual representation of the

algorithm and its steps.

Educators: Educators who teach computer science can use
algorithm visualization tools to enhance their lectures and to help
students visualize the concepts being taught. These tools can also

be used to create interactive learning activities for students.

Researchers: Researchers in the field of computer science can use
algorithm visualization tools to study how people learn algorithms
and to evaluate the effectiveness of different visualization

techniques.

Programmers: Programmers who work with complex algorithms can
use visualization tools to gain a better understanding of how the
algorithms work. This can help them to debug code and to optimize

algorithms for better performance.

Enthusiasts: Anyone interested in algorithms and computer
science can use algorithm visualization tools to explore algorithms
in a fun and interactive way. These tools can be used to learn
about algorithms that are not typically covered in traditional
computer science courses.

Overall, algorithm visualization tools have the potential to benefit
a wide range of wusers, from students to researchers to
programmers and enthusiasts. By providing a visual
representation of complex algorithms, these tools can help users
to better understand how algorithms work and to explore new

algorithms in an interactive way.

ASSUMPTION AND DEPENDENCIES

Algorithm visualization is a technique that is used to represent algorithms in a visual
form to help people understand the algorithm better. However, when creating an
algorithm visualization, there are several assumptions and dependencies that need

to be considered. These include:

The algorithm is correctly implemented: The algorithm visualization assumes that
the algorithm being represented is correctly implemented and works as intended. If

the implementation is incorrect, the visualization may be misleading.

The algorithm has a deterministic behaviour: The algorithm visualization assumes
that the algorithm has a deterministic behaviour, i.e., for a given input, the algorithm
will produce the same output every time it is executed. If the algorithm has a non-
deterministic behaviour, the visualization may not accurately represent the

algorithm.

The algorithm is designed for a specific problem: The algorithm visualization
assumes that the algorithm is designed to solve a specific problem and that the
problem is well-defined. If the problem is not well-defined, the visualization may

not be useful.

The user has a basic understanding of programming concepts: The algorithm
visualization assumes that the user has a basic understanding of programming
concepts like loops, conditionals, variables, etc. If the user does not have this

understanding, the visualization may be difficult to understand.

The visualization tool used is reliable: The algorithm visualization depends on the
reliability of the visualization tool used. If the tool is unreliable, the visualization
may be inaccurate or misleading.

Overall, it is important to consider these assumptions and dependencies when
creating an algorithm visualization to ensure that it accurately represents the

algorithm and is useful for the intended audience.

TECHNOLOGIES

e Tools used in Development.

i Code Editor: VS Code
ii. Integrated Development Environments (IDEs): VS Code
ii. Debugging and Testing Tools

iv. Web Development Tools: HTML, CSS, Chrome Developer Tools

e Development Environment

An algorithm visualization development environment is a software tool that
allows developers to create interactive visualizations of algorithms and data
structures. These visualizations can be used to help learners understand
complex algorithms and how they work. There are several development
environments available for algorithm visualization, including:

a. Programming Languages: JavaScript

b. Integrated Development Environment (IDE): VS Code

c. Debugging and Testing Tools: Chrome Developer Tools, Live Server

d. Data Structures and Algorithms: Searching, Shorting, Graph

e. User Interface (Ul) Design: HTML, CSS

Software Interface

A software interface’s key features for algorithm visualisation include the
following:

1. Operating System (OS): Windows 11, Ubuntu 23.04
2. Code Editor: VS Code

3. Testing and Debugging: Google Chrome, Chrome Developer Tools

Hardware Used

1. Intel Core |5 Processor
2. 8GB RAM

3. Internet Connectivity

Flowchart of the Algorithm Visualizer

Design Code

Testing and Debugging

ﬁlﬁlﬁe
I

Yes

o

.

Design UI

Testing and Debugging

p.

Yes

Class Diagram of Algorithm Visualizer

User Interface Controller Data Manager

Display Algorithm Interpret User Input Store Algorithm Data

Get User Input Execute Command Algorithm Output Data

Algorithm

Algorithm Execution Program Output

Algorithm Input Data

Execute Algorithm Algorithm Output Data
Algorithm Output Data

The class diagram shows the different classes involved in the algorithm visualizer.

e User Interface class is responsible for displaying the algorithm to the user

and getting user input.

o Algorithm class represents the algorithm being visualized, and it provides

methods to get the input, and output.

e Controller class is responsible for interpreting the user's input and sending

commands to the Algorithm Execution Program class.

e Algorithm Execution Program class is responsible for executing the

algorithm and generating the output.

e Data Manager class is responsible for managing the data flow between the
Controller and Algorithm Execution Program classes, as well as storing the

output generated by the Algorithm Execution Program class.

e Qutput class represents the output generated by the algorithm, and it

provides a method to get the output data.

Data Flow Diagram of Algorithm Visualizer

Algorithm Visualizer

¥ A 4

Algorithm Execution
Program

A 4 A 4

-“

The diagram shows three main components: User interface, Controller, Data

manager.

e User interface: This component is responsible for displaying the algorithm to
the user and receiving input from user.

o Controller: This component is responsible for interpreting the user's input
and translating it into commands that can be executed by the algorithm
execution program.

e Data manager: This component is responsible for managing the data flow
between the controller and the algorithm execution engine, as well as
storing the output generated by the algorithm.

e Algorithm execution program: This component is responsible for executing

the algorithm and generating the output.

DATA DICTIONARY

A data dictionary is a document that provides a detailed description of the data
used in an algorithm or program. In algorithm visualization, a data dictionary can
be used to help users understand the inputs, outputs, and variables used in the

algorithm.

The data dictionary typically includes the following information:
Data element name: The name of the data element being described.
Description: A brief description of the data element, including its purpose, source,

and any other relevant information.
Data type: The data type of the element, such as integer, float, or string.

Size: The size of the data element, such as the number of bytes it occupies in

memory.

Default value: The value that is assigned to the data element if no other value is

specified.

Valid values: A list of all valid values that the data element can take.

Dependencies: A list of other data elements that the current element depends on.

Validation rules: Any rules or constraints that must be met for the data element to

be considered valid.

Examples: Examples of typical values for the data element.
By providing this information, the data dictionary can help users understand the
data used in the algorithm and how it is processed. It can also be useful for

developers who need to maintain and update the algorithm over time.

TESTING

Unit Testing

Unit testing is an important aspect of software development,
including algorithm visualization. Algorithm visualization is the
process of visually representing how an algorithm works and its
step-by-step execution. In this context, unit testing involves
testing each component or function of the visualization

separately to ensure that it works as expected.

To perform unit testing in algorithm visualization, you can follow

these steps:

Identify the components of your visualization that need testing.
This could include individual functions, algorithms, and data
structures.

Write test cases for each component. Test cases should be

designed to cover all possible scenarios and edge cases.

Use a testing framework to automate the testing process. Some
popular testing frameworks for JavaScript-based visualization

tools include Jest, Mocha, and Jasmine.

Run the tests and analyse the results. If any test cases fail,

debug the code and fix the issues.

Repeat the process for each component until all tests pass.
It's important to note that unit testing is just one part of the
overall testing process. You should also perform integration
testing to ensure that all components of your visualization work
together seamlessly, and user acceptance testing to ensure that

the visualization meets user requirements.

Integrity Testing

Integrity testing in algorithm visualization is the process of verifying
the correctness and accuracy of an algorithm visualization tool. The
goal is to ensure that the tool is faithfully representing the algorithm
it is visualizing, and that it is not introducing errors or biases that

could mislead users.

There are several strategies that can be used to test the integrity
of an algorithm visualization tool. One approach is to compare the
output of the tool to the expected output of the algorithm for a given
input. This can be done by manually executing the algorithm on a
small input and comparing the results to the output generated by

the visualization tool.

Another approach is to use test cases that cover a wide range of
input sizes and edge cases. This can help identify any potential
errors or limitations in the tool's implementation. It can also help to
identify any performance issues that could cause the tool to run

slowly or crash when dealing with large inputs.

It's also important to consider the usability of the visualization tool.
This includes factors such as ease of use, clarity of the
visualizations, and the ability to customize and control the
visualization parameters. Usability testing can be done by observing
users as they interact with the tool and collecting feedback on their

experience.

Overall, integrity testing is an important step in the development of
any algorithm visualization tool. It helps ensure that the tool is

accurate, reliable, and useful for its intended audience

SNAPSHOTS

Implementing Bar Graphs for Visualization

Html and css code part

Selection View Go Run Terminal Help wtml - Test -\

T P HTM

lection ¥iew Go Bun Terminal Help

M [4 Document

)

G @ 127.0.0.1:5500/ind!

Generate New Data Function

It is a sorted data

(im} github - Search X [https//psamir275.githubio/algo. X) psamir275/psamir275.githubio: X |

< O (8 https/psamir275.github.io/ earch.html#fname

Number to be Searched: [N

Binary Search Ternary Search
Sort The Data Genarate New Data

Data is Sorted, Now You Can Perfom Binary or Ternary Search

63 64 64 64

3 53
44 44 45 46
39
24
15 15
T ll

Random data generated

(m) github - Search X D https://psamir275.github.iofalge. x) psamir275/psamir275.githubio: . x | 4

& G B https://psamir275 github.io/algo/search.html#fname

Number to be Searched: [

Binary Search Ternary Search
Sort The Data Genarate New Data

38
82
78
73 74 n
61 59
49 50 43 48
43 44
38
30 30
22
19 ~
1 1
7
| . |

Home Page

ALGORITHM VISUALIZER

Bring algorithms to life through visualization and interactive exploration.

Algorithmes Visualizer Section

Algorithms to Visualize

Project Description Section

PROJECT DESCRIPTION

The Algorithm Visualizer is a web application designed to provide an interactive and educational platform for understanding various algorithms through visual representation.
This project aims to bridge the gap between theoretical knowledge and practical implementation of algorithms by providing a visually engaging experience.

With the Algorithm Visualizer, users can witness how different algorithms work step-by-step, making complex concepts more accessible and comprehensible. The application offers
a user-friendly interface where users can select from a range of algorithms and customize input parameters to observe the algorithm's behavior in action.

Key Features:
1. Visualize searching & sorting algorithms in real-time

2. Step-by-step e:

3. Customizable input parameters and data structures

To Download the Full Documentation Please

About Us & Contact Us Section

To Download the Full Documentation Please

OUR TEAM

i \
TRy

Y R

Samir Pramanik Souvik Das Biswajit Das Ka:li Moksud
ismi ossain
| am the front-end | am the tester of the Sucheostelfa

: I the front-end 3
developer of the project desgl.lopere ;?n P:(Ee project. I am the content writer of
the project.

project biswajit@example.com

| am content writer
of the project.

souvik@example.com suchismita@example.com kazi@example.com

CONTACT US

%, Phone:

EEmail:

Sorting Algorithm

& O @ 127001

. K

Sorting Algorithm Visualizer o

x [Algorithm Visualizer

® 127001

e Rl Generate New Array

Selection Sort

Generate New Data

im) Document

& C @ 127.00.1:5500/algo,

e 2 e el Generate New Array

Performing Selection Sort

Generate New Array

1
0
o 158
38 P 37
.
i i
B "

After the Sorting

Document x

@ 127.0.0.1:5500/algofsort

el e el Generate New Array

Data is Sorted!!!

55 |36
3 1
13
3 3
ii

Quick Sort

Generate New Data

(im] Document x [} Agorithm Visualizer

& O @ 127.0.0.1:5500/algo/sort.html#contai

T L] Generate New Array

Performing Quick Sort

[Algorithm Visualizer

e Generate New Array

74
57
i
i

After the Sorting

Document x [Algorithm Visualizer

@ 127.0.0.1:5500/algo/sorthtml#container

e] Generate New Array

Data is Sorted!!!

57
41 41 |
36 (37
13
i

Bubble Sort

Generate New Data

(i) Document x [Algorithm Visualizer

& C @ 127.0.0.1:5500/algo/sort htmlécontainer

Generate New Array

Performing Bubble Sort

(3 Algorithm Visualiz

thtml#containe

sl Generate New Array

50 [
132 37 13
g 7
27
i
1
ﬂi

After the Sorting

(im] ament % [Algorithm Visualizer

< C @ 127.0.0.1:550 ofsorthtmlécontainer

Generate New Array

Data is Sorted!!!

66 167
58 |”
50 |
37
3 13
27
2
ﬂi

Insertion Sort

Generate New Data

Document % [§ Algorithm Visualizer

@ 127001 e e

emmeeed Generate New Array

Performing Insertion Sort

Document x [Agorithm Visualizer

@ 127.00.1:5500/algo/sort

e SRl Generate New Array

Element Selected is :67

After the Sorting

x [§ Ngorithm Visualizer

127.0.0.1 algo/sorthtml#container

et L b) Generate New Array

Data is Sorted!!!

75 |
6 3| |
60
2

Cocktail Sort

Generate New Data

x [Algorithm Visualizer

@ 127.00.1:55¢ ofsorthtmH#containe

Generate New Array

Performing Cocktail Sort

(1] Document x [} Algorithm Visualizer

& G @ 127.0015500/lgo/s0r

emmmmmd Generate New Array

102

100
o
3 3
12
i

After the Sorting

im} Document [Algorithm Visualizer

& © @ 12700.1:5500/algo/sorthtmitcontainer

e Rl Generate New Array

Data is Sorted!!!

60 [6
s B
B4 P
ﬂ
rem e S

Searching Algorithm

(im} Document x [) 127.00.1:5500/algo/searchhtml X+

& © @ 127.001:5500/algo/searchhtml A %5 = G

Searchinhg Algorithm Visualizer

(im] Document x [§ 127.00.1:5500/algo/searchhtml: X+

< O @ 127001

+

Number to be Searched: [EEEEEEEEGEN

Binary Search Ternary Search

96 95

94
88 89 85
e 72 69
57
54 53 52 =
49 a =
43 45
35 35
31 30
26 5
10
= |

Linear Search

Performing Linear search to find element 28

O Bocument X D 127.0.0.1:5500/algo/searchhtml: X =
& ©C @ 127.00.1:5500/algo/search htmizfna

+

Number to be Searched:

Binary Search Ternary Search
Genarate New Data

100

(im] Document x [127.00.1:5500/algo/searchhtml: X+

e G @® 127001

+

Number to be Searched:

Binary Search Ternary Search
Sort The Data Genarate New Data

Element Found

Sort function for Binary or Ternary Search

Performing Quick Sort

(im] Document x [127.00.:5500/algo/searchhtml: X

s @ @ 127.0.0.1:5500/algo/search html#

+

Number to be Searched:

Binary Search Ternary Search

(im) Document x [127.00.1:5500/algo/searchhtml: X 4+
< O @ 127.0.0.1:5500/algo/search html#f

+

Number to be Searched: NG

Binary Search Ternary Search

Data is Sorted, Now You Can Perfom Binary or Ternary Search

52 52 ¢

59
55

51
46
3p M
32
28

23
is 18 19 20 -2
- \IIII

Binary Search

Performing Binary search to find element 55

(im) Document x [§ 127.00.1:5500/algo/searchhtm!: x
&< C @ 127001

+

Number to be Searched:

Binary Search Ternary Search

3
28

5 18 19 20 22

14 15

(im] Document x [127.00.1:5500/algo/searchhtml: x
&< G @® 127001

+

Number to be Searched:

Binary Search Ternary Search

Element Found

s 19 20 22
14 15

Ternary Search

Performing Ternary search to find element 69

(im] Document x [§ 127.00.1:5500/algofsearchhtml: X% 4

& © @ 127.00.1:5500/algo/search htmli

Number to be Searched:

Binary Search Ternary Search
Sort The Data Genarate New Data

(im}) Document X D 127.0.0.1:5500/algo/search.html: X 4 —

&< O (@ 127.0.0.1:5500/algo/search html#fname A 18 PE (74

Number to be Searched:

Binary Search Ternary Search
Sort The Data Genarate New Data

Element Found

CONCLUSION and FUTURE SCOPE

Algorithm visualization has become an essential tool for computer science students
and researchers to learn and understand complex algorithms. It is a powerful
technique that helps learners to visualize and understand the working of algorithms,

which is crucial for their success in the field of computer science.

In conclusion, algorithm visualization is a rapidly evolving field, and the future
scope looks promising. With the advent of new technologies and advancements in
the field of computer science, there is a lot of potential for algorithm visualization
to become more interactive and engaging. Moreover, with the increasing demand
for online learning, algorithm visualization tools can be utilized to develop more

effective online courses that cater to the needs of a broader audience.

In the future, algorithm visualization could also be used in other fields like
mathematics and engineering to help learners understand complex concepts.
Additionally, with the rise of machine learning and artificial intelligence, algorithm
visualization could play a crucial role in understanding and explaining how these

algorithms work.

Overall, algorithm visualization has come a long way, and with its many benefits, it
is set to become an even more important tool for teaching and learning in the field

of computer science and beyond.

REFERENCES

. E-learning Tool for Visualization of Shortest Paths Algorithms” by Daniela

Borissova and Ivan Mustakerov, ResearchGate, July 2015.
. “Algorithm Visualization: The State” of the Field by Clifford A. Shaffer,
Matthew L. Cooper, Alexander Joel D. Alon, Monika Akbar, Michael

Stewart, Sean Ponce and Stephen H. Edwardsacm Transactions on
Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

. “Visualizing sorting algorithms” by Brian Faria, Rhode Island College, 2017.
. Geeks for Geeks (https://www.geeksforgeeks.org)

. Google (https://www.google.co.in)

. Tutorials Points (https://www.tutorialspoint.com/)

. Open Al (https://openai.com/)

. Stack Overflow (https://stackoverflow.com)

